Cyclic AMP-induced slow inward current: its synaptic manifestation in Aplysia neurons.
نویسنده
چکیده
Three presynaptic neurons, monosynaptically connected to the medial cells of the pleural ganglion of Aplysia californica and previously shown to elicit cAMP-mediated diminutions in K conductance in those cells (Kehoe, 1985a, b), were shown to elicit still another slow synaptic current that resembles the cAMP-induced cationic current described in the preceding paper (Kehoe, 1990). The synaptic current elicited by these so-called "blocking" neurons was compared, in hyperpolarized medial cells, with the current induced by an intracellular injection of cAMP. It was found that (1) both currents show an outward rectification, (2) both currents are enhanced and prolonged by phosphodiesterase inhibitors (as well as by intracellular acidification of the postsynaptic neuron and by bath-applied caffeine), and (3) both currents react in the same way to changes in (Ca)0, showing a net enhancement when (Ca)0 is reduced and, conversely, a marked diminution when extracellular (Ca)0 is increased. The increase in amplitude of the slow synaptic current in low-Ca solutions and its decrease in high-Ca seawater are contrary to the changes that would be expected from the known effects of Ca on transmitter release at chemical synapses, revealing the overriding importance of the postsynaptic block by Ca. The data presented here strongly suggest that both the slow inward current and the diminutions in K conductance induced by the firing of the 3 blocking neurons are mediated by cAMP. Like the 2 cAMP-mediated diminutions in K conductance (Kehoe, 1985a, b), the cAMP-activated slow inward current, because of its atypical voltage dependence, both depolarizes the medial cell and causes an increase in its input resistance at resting potential. Consequently, the synaptically activated increase in cAMP prolongs the excitability of the medial cells for up to tens of seconds after the end of presynaptic firing.
منابع مشابه
The Voltage-Dependent, Slow Inward Current Induced Neuropeptide FMRFamide in Ap/ysia Neuron RI 4
The effects of the peptide FMRFamide (Phe-Met-Arg-PheNH,) on the soma of neuron R14 in the abdominal ganglion of Aplysia californica and A. brasiliana were characterized. Pressure-ejected FMRFamide caused 3 types of responses, (1) a fast outward current (duration, ~30 set), (2) a fast inward current (duration, ~20 set), and (3) a slow inward current (peak at 0.5-l min; duration, 2-3 min). The s...
متن کاملCyclic AMP-induced slow inward current in depolarized neurons of Aplysia californica.
Cyclic nucleotides have been implicated in many long-lasting transmitter-induced effects on membrane conductance. One previously observed effect of cAMP on molluscan neurons is to induce a slow inward current, which has been further evaluated here in depolarized anterior and medial cells of the pleural ganglion of Aplysia californica in order to understand better its underlying ionic mechanisms...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملA cyclic GMP analog decreases the currents underlying bursting activity in the Aplysia neuron R15.
Bath application of 8-parachlorophenylthio-cyclic GMP (8-pcpt-cGMP) has been shown to increase the number of action potentials per burst in the Aplysia neuron R15. Here we report that 8-pcpt-cGMP can eventually inhibit R15's bursting activity and cause the cell to exhibit slow tonic spiking activity. This action is preceded by decreases in spike frequency and in the amplitude of the interburst ...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 10 10 شماره
صفحات -
تاریخ انتشار 1990